Cascading Proximity Effects in Inhomogeneous Superconductor-Ferromagnetic Structures

THOMAS BAKER, Department of Physics & Astronomy, University of California, Irvine, CA 92697, ADAM RICHIE-HALFORD, OVIDIU ICREVERZI, ANDREAS BILL, Department of Physics & Astronomy, California State University, Long Beach, CA 90840 — When a superconductor is placed near another material, the whole system becomes superconducting by proximity. Paired correlations with a projection on the quantization axis of zero have a shorter coherence length than those with ±1 on the quantization axis. We show that the ±1 projections can generate short range components deep inside a magnetic layer in the middle region of five mutually perpendicular ferromagnets as well as an exchange spring system [1,2]. Measurable consequences including the characteristic signature of short range correlations in the Josephson current of a wide layer and a new type of 0 − π transition will be discussed.


We gratefully acknowledge support from the Achievement Rewards for College Scientists, National Science Foundation DMR-0907242, and the CSU Long Beach Graduate Research Fellowship.

Also Department of Physics & Astronomy, California State University, Long Beach, CA 90840

Thomas Baker
University of California, Irvine