Abstract Submitted for the FWS15 Meeting of The American Physical Society

Lambda Re-Scattering On the Proton JUAN CARDENAS, Presenter, JOHN PRICE, Mentor — A complete study of the structure of the proton requires knowledge of its interaction with other particles. One such particle is the Λ , which is similar in structure to the proton, but with different quark content. Studying the interaction of the Λ with the proton is difficult, since the Λ does not exist naturally, and decays rapidly. The CLAS collaboration at the Thomas Jefferson National Accelerator Facility is able to produce large numbers of Λ 's via the photo production process $\gamma p \rightarrow K^+ \Lambda$. By using a long hydrogen target, the Λ produced in this reaction can sometimes interact with a second proton in the target. The simplest process between a Λ and a proton is the elastic scattering process $\Lambda p \rightarrow \Lambda p$. Determining the cross section for the process $\Lambda p \rightarrow \Lambda p$ requires the detection of the outgoing proton, the decay products of the Λ , and the K⁺ from the original A production. Since the main decay mode of the A is to $\pi^- p$, the complete final state for this process is $K^+\pi^-pp$, which is an apparent violation of baryon number conservation. The first step in this study is the identification of events that have two protons and a K⁺. This talk will discuss the physics motivation behind this work, and will present the current status of the analysis of Λ photo production in events with two protons.

> Juan Cardenas Presenter

Date submitted: 09 Oct 2015

Electronic form version 1.4