A FLEX-based model for normal state quasiparticle properties of strontium ruthenate

JOHN DEISZ, California Lutheran University — We utilize a weak-coupling approximation, FLEX, to analyze quasiparticle properties of strontium ruthenate. Utilizing first-principles-derived parameters for the band structure, spin-orbit interaction and Coulomb and exchange interactions, we quantitatively reproduce the band-structure renormalization and linewidths observed in photoemission. However, the electronic specific heat coefficient is underestimated by a factor of two and superconducting T_c is overestimated by 30 K. Analysis of the band and momentum-resolved self-energy reveals an essentially momentum-independent, Fermi-liquid-like self-energy with the exception of the γ band along the Γ-M cut for which a strongly momentum-dependent, non-Fermi-liquid behavior is observed.