Abstract Submitted for the FWS17 Meeting of The American Physical Society

Muon-bonding site search in MgO: possible implications for earthquake-precursor detection¹ I LIN, M DAM, S WELCH, CAROLUS BOEKEMA, San Jose State University — A computational model is used to study and locate the muon-bonding sites in MgO. Likely, the positive muon localizes in a vacant oxygen tetrahedron. This is similar to what has been observed in other well-known oxides like Fe₂O₃. Potentials are given by a Morse function (describing the muon-oxygen bonding) and Coulombic interactions between the muon and the four O[-2] ions. We plan to extend our work to a larger cluster, extending over a couple of lattice cells (and later over the whole lattice). These investigations are performed in support of Muon-Spin-Resonance (μ SR) MgO & MnO studies, [1] for which μSR signals have been observed. For MnO, only one signal has been observed, as expected. In MgO, an additional sharp signal has been seen, suggesting the existence of extended O[-1] states.[1] The latter can be seen as O[-1] earthquake-like precursor effects. [2] 1] C Boekema et al, APS March meeting (2016). 2] FT Freund, Nat Hazards Earth Sys Sci 7 (2007) 1; FT Freund et al, Phys Chem Earth 31 (2006) 389.

¹Research is supported by AFC and SJSU

Carolus Boekema San Jose State University

Date submitted: 29 Sep 2017 Electronic form version 1.4