Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes

JAVON KNOX, Florida State University — Highly bright light-emitting diodes based on solution-processed all-inorganic perovskite thin film are demonstrated. The cesium lead bromide (CsPbBr$_3$) created using a new poly(ethylene oxide)-additive spin-coating method exhibits photoluminescence quantum yield up to 60% and excellent uniformity of electrical current distribution. Using the smooth CsPbBr$_3$ films as emitting layers, green perovskite-based light-emitting diodes (PeLEDs) exhibit electroluminescent brightness and efficiency above 53 000 cd m$^{-2}$ and 4%: a new benchmark of device performance for all-inorganic PeLEDs.

This work made use of the Condensed Matter and Material Physics (CMMP) Facility at the Florida State University. The authors thank Dr. Eric Lochner for his help and discussions on material characterizations. This work was financially supported by the F1