Abstract Submitted for the GEC05 Meeting of The American Physical Society

A multi-beam model for low-current, very high E/N discharges in hydrogen. A.V. PHELPS, JILA, University of Colorado and NIST — The multibeam model of Helm and Störi¹ has been applied to the motion and reactions of H⁺, H_2^+ , H_3^+ , fast H_2 , and fast H in H_2 for a uniform electric field. Plots of most of our analytic expressions for the cross sections are available². Elastic scattering of nonidentical particles is modelled with an energy loss for backward scattering in centerof-mass and the elastic momentum transfer cross section. For identical particles, we use the energy loss for 90° scattering and the elastic viscosity cross section. Calculated rates of excitation of H_{α} and the uv continuum versus distance and pressure are compared with experiments^{3,4}. Calculated ion and fast neutral fluxes at the cathode will be compared with calculations using Monte Carlo methods⁵.

¹D. Helm and H. Störi, J. Appl. Phys. **72**, 3330 (1992).

²A. Bogaerts and R. Gijbels, Spectrochim. Acta Part B 57, 1071 (2002).

³H.A.M. Blasberg and F.J. de Hoog, Physica **54**, 468 (1971).

⁴Z.Lj. Petrović, B.M. Jelenković, and A.V. Phelps, Bull. Am. Phys. Soc. **37**, 1951 (1992).

⁵T. Šimko, Z. Donkó, and K. Rózsa, 23rd Intl'l. Conf. on Ionization Phenomena in Gases, (Univ. Paul Sabatier, Toulouse, 1997), p. II-64.

Arthur Phelps JILA, University of Colorado and NIST

Date submitted: 21 May 2005

Electronic form version 1.4