Abstract Submitted for the GEC05 Meeting of The American Physical Society

Balmer series emission in the afterglow of high-pressure, laserinduced hydrogen and hydrogen-argon plasmas LUTZ HUWEL, Wesleyan University, TOM MORGAN, Wesleyan University, BILL GRAHAM, Queen's University Belfast — The afterglow of photoionised plasmas created in hydrogen and hydrogen with a small fractional addition of Ar (3.5 %) has been studied by focussing a 15 ns, 10 Hz, 1064 nm laser pulse into gas that is at a pressure of 10^5 Pa. At the focus, the laser power density is about 10^{11} W/cm². Light emission is dispersed by a 0.6 m monochromator, with a 1220 line/mm grating blazed at 500 nm and detected using an image-intensified linear diode. In pure hydrogen, H α , H β , and H γ emission was observed to about 4 μ s. In the mixture, the peak emission intensity is enhanced by a factor of about 2, H δ and H ε lines are also observed, and the emission of the H α and H γ was observable to about 6 μ s. The electron density, determined from Stark-broadening, is found to have a complex temporal behaviour. From an initial value at 0.3 μ s of about 3.5×10^{16} cm⁻³ in pure hydrogen and 6.5×10^{16} cm⁻³ in the H_2/Ar mixture, the density falls by an order of magnitude by 1.5 μ s. Thereafter, in pure hydrogen, an increase in density by about 1×10^{15} cm⁻³ over a period of about 1 μ s is observed, followed by a decrease. In the mixture, a plateau occurs in the density temporal behaviour. It is also found that the line emission intensity decay rate changes at about 1.5 μ s (pure). WG was a Mellon Fellow at Wesleyan University.

> William Graham Queen's University Belfast

Date submitted: 16 Jun 2005

Electronic form version 1.4