High-Precision Cross Sections for Electron-Atom Collisions in Laser and Lighting Applications ${ }^{1}$

KLAUS BARTSCHAT, Drake University, Department of Physics and Astronomy, Des Moines, IA 50311
In recent years, much progress has been achieved in calculating reliable cross-section data for electron scattering from atoms and ions. In particular, the "convergent close-coupling" (CCC) [1] and " R-matrix with pseudo-states" (RMPS) [2] methods have been extremely successful in describing elastic scattering as well as electron-impact excitation and ionization of light quasi-one and quasi-two electron targets, such as atomic hydrogen, helium, the alkalis, and the alkali-earth elements. However, accurate calculations of electron collisions with more complex targets, notably the heavy noble gases $\mathrm{Ne}-\mathrm{Xe}$, heavy quasi-one electron targets such as Zn, Ba, or Hg , and transition metals such as Fe or Mo [3], continue to be a major challenge. We have recently further developed a new version of the R-matrix (close-coupling) method, using a B-spline basis with non-orthogonal sets of term-dependent orbitals [4]. This method allows us to generate target descriptions of unprecedented accuracy in collision calculations. Example results [5-7] for some of the systems mentioned above illustrate that the flexibility of the B-spline R-matrix (BSR) method to describe both the N-electron target and the ($N+1$)-electron collision problems is of crucial importance for obtaining highly accurate cross sections, particularly in the low-energy near-threshold regime, which is often dominated by resonance structure.
[1] I. Bray, D.V. Fursa, A.S. Kheifets, and A.T. Stelbovics, J. Phys. B 35 (2002) R117.
[2] K. Bartschat, Comp. Phys. Commun. 114 (1998) 168.
[3] K. Bartschat, in Atomic and Molecular Data and Their Applications, D.R. Schultz, P.R. Krstic, and F. Owbny (eds.), AIP Conf. Proc. \#636 (2002) 192.
[4] O. Zatsarinny and C. Froese Fischer, J. Phys. B 33 (2000) 313.
[5] O. Zatsarinny and K. Bartschat, J. Phys. B 37 (2004), 2173 and 4693.
[6] O. Zatsarinny and K. Bartschat, Phys. Rev. A 71 (2005), 022716.
[7] O. Zatsarinny, K. Bartschat, L. Bandurina, and V. Gedeon, Phys. Rev. A 71 (2005) 042702.
${ }^{1}$ This work was performed in collaboration with Oleg Zatsarinny and supported by the NSF under grants PHY-0311161 and PHY-0244470.

