Abstract Submitted for the GEC05 Meeting of The American Physical Society

Dissociative Electron Attachment to H_2O and H_2S DANIEL HAX-TON, University of California - Berkeley & Lawrence Berkeley Lab, THOMAS RESCIGNO, Lawrence Berkeley Lab, C. WILLIAM MCCURDY, University of California - Berkeley & Lawrence Berkeley Lab & University of California - Davis — Dissociative electron attachment (DA) to H_2O is of direct importance for both biological and techological systems. The calculations on H_2O and H_2S presented comprise the first *ab initio* treatment of DA to a polyatomic molecule employing the full dimensionality of nuclear motion. Cross sections obtained for DA via the ${}^{2}B_{1}$ state of H_2O agree well with experiment, reproducing the high degree of vibrational excitation of the OH fragment. Several interesting features of the A' manifold of resonances for H₂O have been discovered, including a conical intersection between the ${}^{2}A_{1}$ and ${}^{2}B_{2}$ Feshbach resonances and a branch-point degeneracy between the ${}^{2}B_{2}$ shape and Feshbach resonances. This latter feature has no analogue in boundstate theory. We show results of recent calculations on the Renner-Teller coupled ${}^{2}A_{1}$ and ${}^{2}B_{1}$ surfaces, and on electronically coupled diabatic ${}^{2}A_{1}$ and ${}^{2}B_{2}$ surfaces. The angular dependence of the H^- + OH channel for the 2B_1 state of H_2O and that of the analogous channel and state of H_2S have been calculated by incorporating the mixing of different partial waves into the entrance amplitude, and for H_2S , the variation of this mixing with geometry.

> Daniel Haxton University of California - Berkeley & Lawrence Berkeley Lab

Date submitted: 10 Jun 2005

Electronic form version 1.4