Optical emission and self mode transition of low frequency inductively coupled plasmas driven by crossed internal oscillating currents

YUPING REN, PAVLO RUTKEVYCH1, JIDONG LONG, QIJIN CHENG, SHUYAN XU, PSAC/NIE/NTU, Singapore, KOSTYA OSTRIKOV2, School of Physics, The University of Sydney, Australia — Optical emission and self induced electrostatic (E)-to-electromagnetic (H) mode transition in a newly-developed plasma reactor are investigated. Volume uniform, high density Ar/N\textsubscript{2} plasmas are generated by means of transverse unidirectional currents driven by a low frequency RF power of 460 kHz in a 23 cm height and 32 cm diameter reactor. Plasma properties are investigated using a high-resolution optical emission spectroscope. The measurements reveal that the spatial profiles of the excited atomic naturals and singly ionized ions feature a high degree of uniformity in radial and axial directions. A spatially homogeneous E-mode discharge is observed at a power level as small as 40 W. At RF power exceeding a transition threshold of 230 W, the integral emission intensity suddenly jumps to approximately one order of magnitude (H-mode). Further increase of RF power results in a gradual rise of the optical emission intensity. This phenomenon is reproducible for all discharges under the investigation. Furthermore, a spontaneous E\toH mode transition (“self-transition”) is observed at input power slightly below the conventional transition threshold value.

1Presenting author
2Also with: PSAC/NIE/NTU, Singapore

Pavlo Rutkevych
PSAC/NIE/NTU, Singapore

Date submitted: 13 Jun 2005