GEC05-2005-000213

Abstract for an Invited Paper for the GEC05 Meeting of the American Physical Society

Microcavity Discharge Devices and Arrays: A Photonic Platform for Photodetectors, Optical Amplifiers and Displays J. GARY EDEN, University of Illinois

Microcavity plasma is the term associated with the spatial confinement of a nonequilibrium plasma to a cavity having a characteristic dimension below nominally 500 μ m. Recently, fabrication techniques developed largely by the semiconductor and MEMs communities have been adapted to realize a family of microcavity plasma (microplasma) devices with crosssectional dimensions as small as $(10 \ \mu m)^2$. Fabricated in a wide range of materials platforms, including Si, ceramics, and metal/dielectric multilaver structures, these devices exhibit a number of intriguing properties. These include: 1) the ability to operate on a continuous basis at pressures of one atmosphere and above, 2) specific power loadings of at least tens of $kW-cm^{-3}$, and 3) microcavity volumes of nanoliters or picoliters. This talk will summarize the properties of microcavity plasmas with characteristic dimensions in the 10-150 μ m range, and operating at gas pressures up to ~1200 Torr. Emphasis will be placed on the scientific opportunities afforded by: 1) the access provided by microcavity plasmas to a new region of parameter space, and 2) the ability to now interface a low temperature plasma with an electronic or optical material. Several examples of photonic structures and their applications will be presented, including the recent development of arrays of 250,000 (500 \times 500) inverted pyramid microcavity devices fabricated in silicon. Having an active area of 25 cm², this array has been operated in both the rare gases and Ar/N_2 mixtures, and yields luminous efficacies >5 lumens/W when coupled with a commercial green phosphor ($Mn:Zn_2SiO_4$). Ceramic microchips offering a microplasma gain length of 1-2 cm have also been developed and gain on the 460.3 nm transition of Xe⁺ has been observed. Applications of microplasmas in biomedical diagnostics and optics will also be discussed.