Abstract Submitted for the GEC05 Meeting of The American Physical Society

Observation of N_4^+ recombination at near atmospheric pressure¹ S.F. ADAMS, C.A. DEJOSEPH, JR., Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, J.M. WILLIAMSON, Innovative Scientific Solutions, Inc., Dayton, OH — We previously reported our initial modeling results of the N_4^+ $+ e^{-}$ recombination observed by monitoring the time-resolved N₂ emission (GEC03, paper SRP 24). The N₂ 2nd positive (C ${}^{3}\Pi_{u}$ – B ${}^{3}\Pi_{g}$) and N₂⁺ 1st negative (B² Σ_{u}^{+} - $X^2\Sigma_q$) emission was measured following laser resonance-enhanced multi-photon ionization (REMPI) of N_2 at near-atmospheric pressure. N_4^+ is produced by the threebody association reaction of $N_2^+ + N_2$ which occurs rapidly at these pressures. Two types of fluorescence are observed following irradiation of N_2 by the laser pulse. A "prompt" fluorescence composed primarily of emission from the N_2^+ 1st negative system (B ${}^{2}\Sigma_{u}^{+}$ -X ${}^{2}\Sigma_{q}$) followed by a "delayed" fluorescence form the aforementioned N_2 (C-B). The preliminary modeling presented previously has been extended to include other key N_2 neutral and ionic species as well as the important loss channel of N_4^+ by laser photodissociation which had been neglected. The improved model along with additional N_2^+ LIF and N_4^+ UV photolysis results will be presented.

¹This work supported by the Air Force Office of Scientific Research

Charles DeJoseph U. S. Air Force

Date submitted: 14 Jun 2005

Electronic form version 1.4