Abstract Submitted for the GEC06 Meeting of The American Physical Society

Excitation of the near-uv continuum of H_2 by fast H atoms A.V. PHELPS, JILA, U. of Colorado and NIST — We model the production of the nearuv continuum of H_2 by collisions of fast atoms, fast ions, and electrons with H_2 in a uniform-electric-field drift tube.¹ Relative intensities versus position at 300 Td $\langle E/N \rangle \langle 20 \text{ kTd } (1 \text{ Td} = 10^{-21} \text{ Vm}^2)$, at 0.95 to 0.12 Torr, and 4 cm electrode separation are normalized to electron excitation coefficients at low E/N. Electron and heavy-particle induced excitation are separated by their growth toward the anode or the cathode, respectively. The excitation attributed to heavy-particles increases approximately as the cube of the distance from the anode. This growth is consistent with a three-step reaction sequence starting with a roughly uniform density of H_2^+ produced by electrons. A multi-beam model for the electrons, H^+ , H_2^+ , H_3^+ , fast H_2 , and fast H confirms this dependence. The principal excitation step is fast H + H₂ \rightarrow H₂ $(a^3\Sigma_g^+)$ + H with a cross section roughly twice that for H α excitation.

¹Z. Lj. Petrović and A. V. Phelps, Int'l. Seminar on Reactive Plasmas, Nagoya, June 17-19, (1991).

> A. V. Phelps JILA, U. of Colorado and NIST

Date submitted: 26 May 2006

Electronic form version 1.4