Pump/Probe measurement of V-V transfer in O_2 and H_2 TAI AHN, Univ of California - Riverside, IGOR ADAMOVICH, WALTER LEMPERT, Ohio State University — We present new sets of V-V rate coefficients for vibrational levels 0 – 5 in O_2 and H_2 at 300 K, using a stimulated Raman – spontaneous Raman pump/probe apparatus. For O_2 it is found that previously reported semi-classical trajectory calculations of Coleti and Billing underestimate the V-V rate coefficients by approximately one order of magnitude, in agreement with recent measurements by of Kalogerakis and the earlier observations of Diskin. For H_2 non-resonant processes, comparison with recalculated semi-classical predictions using the identical potential to that given by Cacciatori and Billing results in predicted rates which are too fast, by a factor of ~ 2.5, consistent with the previously reported value of Kreutz. However for the “resonant” V-V process, H_2 (v=1) + H_2 (v=1) \rightarrow H_2 (v=2) + H_2 (v=0), predictions are found to be too slow, by a factor of approximately two, consistent with previous reported data of Farrow and Chandler. This suggests that semi-classical calculation methods that treat the rotational motion classically may be unsuitable for H_2, due to rotational energy level spacings which are comparable to $k_B T$.

Walter Lempert
Ohio State University

Date submitted: 12 Jun 2006

Electronic form version 1.4