Abstract Submitted for the GEC06 Meeting of The American Physical Society

Pump/Probe measurement of V-V transfer in O₂ and H₂ TAI AHN, Univ of California - Riverside, IGOR ADAMOVICH, WALTER LEMPERT, Ohio State University — We present new sets of V-V rate coefficients for vibrational levels 0 – 5 in O₂ and H₂ at 300 K, using a stimulated Raman – spontaneous Raman pump/probe apparatus. For O₂ it is found that previously reported semi-classical trajectory calculations of Coleti and Billing underestimate the V-V rate coefficients by approximately one order of magnitude, in agreement with recent measurements by of Kalogerakis and the earlier observations of Diskin. For H₂ non-resonant processes, comparison with recalculated semi-classical predictions using the identical potential to that given by Cacciatori and Billing results in predicted rates which are too fast, by a factor of ~ 2.5 , consistent with the previously reported value of Kreutz. However for the "resonant" V-V process, H_2 (v=1) + H_2 (v=1) -> H_2 (v=2) + H₂ (v=0), predictions are found to be too slow, by a factor of approximately two, consistent with previous reported data of Farrow and Chandler. This suggests that semi-classical calculation methods that treat the rotational motion classically may be unsuitable for H₂, due to rotational energy level spacings which are comparable to k_BT .

> Walter Lempert Ohio State University

Date submitted: 12 Jun 2006 Electronic form version 1.4