Abstract Submitted for the GEC06 Meeting of The American Physical Society

RF Impedance of a Spherical Probe at High and Low Gas Pressure¹ R.F. FERNSLER, D.N. WALKER, SFA, Crofton, MD, D.D. BLACK-WELL, W.E. AMATUCCI, Plasma Physics Division, Naval Research Laboratory, S.J. MESSER, NRL-NRC Postdoctoral Associate — The plasma electron density n_{eo} is most often determined using a Langmuir probe to measure the dc current as a function of the applied dc voltage V_{dc} . The dc impedance Z_{dc} varies strongly with V_{dc} , and models are needed to relate Z_{dc} to n_{eo} . Secondary electron emission, ion collisions, and other effects further complicate the analysis. Alternatively, a variable rf voltage can be applied while holding V_{dc} fixed. As long as the rf voltage is small, the rf impedance Z_{rf} varies with the frequency f but not the amplitude of the voltage, and for a fixed frequency, Z_{rf} depends only on $n_e(r)$ and the neutral gas density N. In this talk theoretical and experimental results for Z_{rf} are related to n_{eo} for a small spherical probe. At low N, Z_{rf} becomes resistive whenever f equals the local plasma frequency, and both the real and imaginary parts of Z_{rf} peak when f equals the bulk plasma frequency. The peaks make n_{eo} easy to determine, and the resistance at lower frequencies can be used to determine $n_e(r)$ within the sheath and presheath. At high N, the resistance depends mainly on n_{eo}/N , so n_{eo} is again easy to determine. Theoretical and experimental results for several spheres will be compared with Langmuir-probe data at high and low gas pressure.

¹Work supported by ONR.

Richard Fernsler Plasma Physics Division, Naval Research Laboratory

Date submitted: 13 Jun 2006

Electronic form version 1.4