Abstract Submitted for the GEC06 Meeting of The American Physical Society

Optimization of H_2 Production in Ar/NH_3 Micro-discharges¹ RAMESH ARAKONI, ANANTH N. BHOJ, University of Illinios, MARK J. KUSH-NER, Iowa State University — Hydrogen powered vehicles and portable fuel cells may require real-time generation of H₂ to provide fuel safely and with rapid response. One such method is to produce H_2 from feedstock gases that can be more safely stored, such as NH_3 . Microdischarge plasmas are being investigated as a means of H_2 production from NH_3 and other gases. The high power densities (10s kW/cm^3) that can be obtained in microdischarges provide an intense source of electron impact as well as thermal decomposition of the feedstock gases. By operating at high pressures (> 100 s Torr), reformation of the dissociated products leads to efficient production of H_2 . In this work, results from a computational investigation of production of H_2 in high pressure microdischarges sustained in Ar/NH_3 mixtures will be discussed. Plug-flow and 2-dimensional plasma hydrodynamics models were used to develop scaling laws to optimize the energy efficiency of the process (e.g., eV/H_2 molecule produced). The 2-d model resolves non-equilibrium electron, ion and neutral transport using fluid equations. The microdischarge geometry of interest is a sandwich flow-through reactor with a central hole a few hundred microns in diameter, power of a few W and residence times of a few microseconds.

¹Work supported by the National Science Foundation

Mark J. Kushner Iowa State University

Date submitted: 16 Jun 2006

Electronic form version 1.4