Diagnostics of an rf-excited micro atmospheric pressure plasma jet

S. REUTER, K. NIEMI, Department of Physics, University Duisburg-Essen, D-45141 Essen, Germany, V. SCHULZ-VON DER GATHEN, T. MUSSENBROCK, T. GANS, Center for Plasma Science and Technology CPST, Ruhr University Bochum, D-44780 Bochum, Germany — The “standard” 13.56 MHz rf-excited plasma jet operates at ambient conditions. It generates a homogeneous plasma in helium or argon with small admixtures (about 1 vol.-%) of oxygen. Absolute concentrations of atomic oxygen have been measured in the effluent of the plasma jet by two-photon laser-induced fluorescence (TALIF). Even at several centimeter distance from the nozzle still there is 1% of the initial atomic oxygen density of 10^{16} cm$^{-3}$ present. Here we present a modified μ-APPJ version particularly designed for investigation of the discharge interior. First emission spectroscopic investigations and tests of applicability are presented. The wettability of polymer Petri dishes could be adjusted in a wide range (wetting angle from 60° to below 10°).