Abstract Submitted for the GEC06 Meeting of The American Physical Society

 $O_2(1\Delta)$ Production and Oxygen-Iodine Kinetics in Flowing Afterglows for Electrically Excited Chemical-Oxygen-Iodine Lasers¹ RAMESH ARAKONI, University of Illinois, NATALIE Y. BABAEVA, MARK J. KUSHNER, Iowa State University — Chemical oxygen-iodine lasers (COILs) achieve oscillation on the ${}^{2}P_{1/2} \rightarrow {}^{2}P_{3/2}$ transition of atomic iodine at 1.315 μ m by a series of excitation transfers from $O_2(1\Delta)$. In electrically excited COILs, (eCOILs) the $O_2(1\Delta)$ is produced in a flowing plasma, typically He/O_2 , at a few to tens of Torr. eCOILs additionally differ from conventional systems in the large amount of O atoms produced due to electron impact dissociation. O atoms are advantageous in that they react with and dissociate I_2 , but O atoms also quench $I({}^2P_{1/2})$. To some degree, the O atom density in the afterglow can be controlled by injecting NO or NO₂ which consumes O atoms. This also impacts O_3 production, particularly at higher pressures where quenching of $O_2(^1\Delta)$ by O_3 is problematic. In this paper, results from computational investigations using plug-flow and 2-dimensional plasma hydrodynamics models will be discussed for scaling laws in eCOIL systems for $O_2(^1\Delta)$ production. We will discuss O-atom management with NO/NO_2 additives and $I(^2P_{1/2})$ production with I₂ injection. Scaling to higher pressures will be discussed where gas heating and O_3 quenching of $O_2(^1\Delta)$ become important.

¹Work supported by Air Force Office of Scientific Research and National Science Foundation.

Mark J. Kushner Iowa State University

Date submitted: 19 Jun 2006

Electronic form version 1.4