Abstract Submitted for the GEC06 Meeting of The American Physical Society

OODR-LIF experiments on $N_2(A^3\Sigma u^+)$ in volume and in surface atmospheric pressure DBDs¹ SANTOLO DE BENEDICTIS, PAOLO F. AM-BRICO, GIORGIO DILECCE, CNR, IMIP-Bari, Italy, MILAN SIMEK, Academy of Sciences, Prague, Cz rep, CNR COLLABORATION, AVCR COLLABORATION — A calibrated optical double resonance laser induced fluorescence, OODR-LIF, has been used to measure $N_2(A^3\Sigma_{\mu}^+)$ metastable density at high pressure in the voltage cycle of volume and surface atmospheric DBDs. OODR_LIF excitation-detection scheme is: $N_2(A^3\Sigma_u^+, v) + h\nu_{L1} \rightarrow N_2(B^3\Pi_g, v') + h\nu_{L2} \rightarrow N_2(C^3\Pi_g, v'') \rightarrow N_2(C^3\Pi_g, v'')$ $N_2(C^3\Pi_q, v'') + h\nu_E$. The two exciting photons (*red*- ν_{L1} and UV- ν_{L2}) are generated by two independently tunable and synchronized lasers. In volume DBD, $N_2(A)$ is measured in the discharge gap (d=1.5 mm, voltage 10 kV_{pp} at 1.8 kHz) pulsed at $T_{ON}=5$ ms and $T_{OFF}=10$ ms. In surface DBD, $N_2(A)$ is measured in the gas layer over a comb electrode deposited over a ceramic plate back covered by a metallic large background electrode. The current and the applied voltage are monitored by a digitizing oscilloscope. The measured time-resolved emissions of N₂ SPS and NO- γ bands allows exploring the correlations between emissions, LIF and discharge current and implementing a calibration of OODR-LIF. The measured density is about 10^{13} cm⁻³ in volume DBD while lower in a surface DBD.

¹Project FIRB-MIAO

Santolo De Benedictis CNR, IMIP-Bari

Date submitted: 23 Jun 2006

Electronic form version 1.4