RF Noise Generation in High-Pressure Short-Arc DC Xenon Lamps

OLGA MINAYEVA, DOUGLAS DOUGHTY, PerkinElmer Optoelectronics — Continuous direct current xenon arcs will generate RF noise under certain circumstance, which can lead to excessive electro-magnetic interference in systems that use these arcs as light sources. Phenomenological observations are presented for xenon arcs having arc gaps ~1 mm, cold fill pressures of ~2.5 MPa, and currents up to 30 amps. Using a loop antenna in the vicinity of an operating lamp, it is observed that as the current to the arc is lowered there is a reproducible threshold at which the RF noise generation begins. This threshold is accompanied by a small abrupt drop in voltage (~0.2 volts). The RF emission appears in pulses ~150 nsec wide separated by ~300 nsec - the pulse interval decreases with decreasing current. The properties of the RF emission as a function of arc parameters (such as pressure, arc gap, electrode design) will be discussed and a semi-quantitative model presented.