Abstract Submitted for the GEC07 Meeting of The American Physical Society

Behavior of Excited Oxygen Atoms in Rare gas mixture O₂ Surface Wave Excited Plasma KEIGO TAKEDA, SEIGO TAKASHIMA, MASARU HORI, Nagoya University — Excited oxygen atom $(O(^1D_2))$ has attracted very much on the oxygen-based plasma processes, such as plasma oxidation, surface cleaning, resist ashing, etc. Since it is supposed that the $O(^{1}D_{2})$ atom is the most reactive species in all species in the oxygen-based plasma. Therefore, it is strongly required to investigate the behaviors of $O(^{1}D_{2})$ atom in the oxygen-based plasmas, the quantitative information of $O(^{1}D_{2})$ atom have never been clear, because the convenient light sources for absorption spectroscopic techniques of $O(^1D_2)$ atoms have not developed. The vacuum ultraviolet laser absorption spectroscopy (VUVLAS) has a great potential to measure the atomic radicals in the process plasmas. Therefore, in this study, we have measured the absolute density of $O(^{1}D_{2})$ atom in the rare gas mixture O_2 surface wave excited oxygen plasma (SWP) by using VUVLAS with tunable VUV laser. The absolute densities of $O(^{1}D_{2})$ atom in the O_{2}/Ar and O_{2}/Kr SWPs were evaluated as a function of various plasma conditions. From these results, the O_2/Ar SWP has a potential to realize the high $O(^1D_2)$ atom density compared with the O_2/Kr SWP and the density in the O_2/Ar SWP was the maximum around 2×10^{12} cm⁻³ at the high Ar flow rate ratio and low pressure.

> Keigo Takeda Nagoya University

Date submitted: 14 Jun 2007 Electronic form version 1.4