Low-temperature Plasma Enhanced Chemical Vapour Deposition of Nanodevice-grade nc-3C-SiC

KOSTYA (KEN) OSTRIKOV, Plasma Nanoscience, The University of Sydney, QIJIN CHENG, SHUYAN XU, JIDONG LONG, NIE and Institute of Advanced Studies, Nanyang Technological University

The development of robust fabrication techniques that are capable of achieving a synergy of essential structure-, composition-, function/property-, application-, and process-related requirements in the same material is the ultimate goal of Materials Science [1]. Despite the outstanding chemical, mechanical, optical and thermal properties of bulk SiC, applications of nanocrystalline silicon carbide (nc-SiC) [2] in nanodevices are hampered by a substantial lack of such synergy. Here we report on the plasma-based synthesis of nanodevice-grade nc-3C-SiC films, with very high growth rates (7-9 nm/min) at low and ULSI technology-compatible process temperatures (400-550 °C), featuring: high nanocrystalline fraction (67% at 550 °C); good chemical purity; excellent stoichiometry throughout the entire film; wide optical band gap (3.22-3.71 eV); refractive index close to that of single-crystalline 3C-SiC; and clear, uniform, and defect-free Si-SiC interface. The counter-intuitive low SiC hydrogenation in a H$_2$-rich plasma process is explained by hydrogen atom desorption-mediated crystallization. [1] K. Ostrakov, Rev. Mod. Phys. 77, 489 (2007) [2] Q. J. Cheng, S. Xu, J. D. Long, K. Ostrikov, Appl. Phys. Lett. 90, 173112 (2007)

Kostya (Ken) Ostrikov
Plasma Nanoscience, The University of Sydney

Date submitted: 15 Jun 2007