Abstract Submitted for the GEC07 Meeting of The American Physical Society

Plasma Excited Chemical-Oxygen-Iodine Lasers: Optimizing Injection and Mixing for Positive Gain¹ NATALIA Y. BABAEVA, LUIS A. GARCIA, RAMESH A. ARAKONI, MARK J. KUSHNER, Iowa State University — Chemical oxygen-iodine lasers achieve oscillation on the ${}^{2}P_{1/2} \rightarrow {}^{2}P_{3/2}$ transition of atomic iodine at 1.315 μ m by a series of excitation transfers from O₂(¹ Δ). In electrically plasma excited devices (eCOILs), $O_2(^1\Delta)$ is produced in a flowing plasma, typically He/O_2 , at a few to tens of Torr. The iodine is injected into the flow as a He/I_2 mixture immediately upstream (or in) a supersonic nozzle. A small positive gain with I* limited to a narrow boundary layer near the wall indicates slow mixing when the I₂ is injected from the wall. This results in low utilization of $O_2(^1\Delta)$. In this paper we discuss results from 1- and 2-dimensional computational investigations of means to optimize gain in eCOILs by using different I_2 injection strategies. It was found that due to the plasma generated distribution $O_2(^1\Delta)$, placement of injectors closer to the axis significantly increased gain by facilitating complete $O_2(^1\Delta)/I_2$ mixing. This is partly a function of the inlet flow of NO through the discharge which regulates the density of O atoms produced by electron impact dissociation of O_2 . By optimizing the nozzle dimensions, their location, and I_2 and NO flow rates, the yield of $O_2(^1\Delta)$ required to achieve positive gain can be minimized.

¹Work supported by AFOSR and NSF.

Mark J. Kushner Iowa State University

Date submitted: 15 Jun 2007

Electronic form version 1.4