Abstract Submitted for the GEC07 Meeting of The American Physical Society

Comparison of Ion Chemistries in Octafluoro-2-butene (2-C₄F₈) and in Octfluorocyclobutane $(c-C_4F_8)^1$ CHARLES JIAO, ISSI, Dayton, OH, CHARLES DEJOSEPH, ALAN GARSCADDEN, Air Force Research Laboratory, WPAFB, OH — 2-C₄F₈ is one of the promising candidates to replace c-C₄F₈ that has been widely used for dielectric etching but is not environmentally friendly. In this study we have investigated electron impact ionization and ion-molecule reactions of 2-C₄F₈ using Fourier transform mass spectrometry (FTMS), and compared the results with those of c-C₄F₈ we have studied previously. Electron impact ionization of 2-C₄F₈ produces 15 ionic species including $C_4F_{7,8}^+$, $C_3F_{3,5,6}^+$, $C_2F_4^+$ and CF_{1-3}^+ as the major ions. The total ionization cross section of 2-C₄F₈ reaches a maximum of 1.8×10^{-15} cm² at 90 eV. The ionization is dominated by the channel forming the parent ion $C_4F_8^+$ from 12 to 18 eV, and by the channel forming $C_3F_5^+$ from 18 to 70 eV. After 70 eV, CF_3^+ becomes the dominant product ion. Among the major ions generated from the electron impact ionization of $2\text{-}\mathrm{C}_4\mathrm{F}_8$, only CF^+ , CF_2^+ and CF_3^+ are found to react with 2-C₄F₈, via F⁻ abstraction or charge transfer mechanism. The charge transfer reaction of $Ar^+ + 2-C_4F_8$ produces primarily $C_4F_7^+$.

¹This work is supported in part by the AFOSR.

Charles Jiao ISSI, Dayton, OH

Date submitted: 20 Jun 2007 Electronic form version 1.4