Abstract Submitted for the GEC08 Meeting of The American Physical Society

Li⁺ attachment mass spectrometric investigation of high-mass neutral species in the downstream region of Ar/CF_4 , $Ar/CF_4/O_2$ and Ar/CF₄/H₂ plasmas KENJI FURUYA, Kyushu University, HIROSHI OKU-MURA, YUJI TAMAI, AKIHIRO IDE, AKIRA HARATA, KYUSHU UNIV. TEAM — Recently gaseous high-mass species have received significant attentions as important contributors to the nucleation of films and particulates in fluorocarbon plasmas. We have unambiguously identified the gaseous high-mass neutral species in the downstream region of the Ar/CF_4 plasma [1], using the Li⁺ attachment ionization technique that is a fragment-free ionization method. In this report, we show the results of mass analysis of high-mass neutral species in the $Ar/CF_4/O_2$ and $Ar/CF_4/H_2$ plasmas as well as Ar/CF₄. In the Ar/CF₄ plasma, we observed $C_n F_{2n+2}$ (n = 2-7) and $C_n F_{2n}$ (n = 4-8) as neutral species. Adding O_2 to the Ar/CF₄ plasma resulted in the intensity decrease of $C_n F_{2n+2}$ and $C_n F_{2n}$, especially of those with relatively small n values. $C_n F_{2n}O$ (n = 1-7) were newly observed in the Ar/CF₄/O₂ plasma. In contrast, adding H_2 to the Ar/CF₄ plasma resulted in the production of various new compounds, such as $C_n F_{2n-2}$ (n=3-8), $C_n F_{2n-4}$ (n=3-9), $C_n F_{2n+1} H$ (n=1-7), $C_nF_{2n-1}H$ (n=2-8), $C_nF_{2n-3}H$ (n=4-9) and $C_nF_{2n-5}H$ (n=5-9). These species are produced through the abstraction of F from various $C_n F_m$ species by the H radical and the addition of H to them. [1] K. Furuya, S. Yukita, H. Okumura, A. Harata, Chem. Lett. **34**, 224 (2005).

> Kenji Furuya Kyushu University

Date submitted: 28 May 2008

Electronic form version 1.4