Abstract Submitted for the GEC08 Meeting of The American Physical Society

Alignment relaxation of $Ne^{(2p_i[J=1])}$ atoms due to collisions with He(1s²) atoms VAIBHAV KHADILKAR¹, Lamar University, HIRAKU MATSUKUMA, MASAHIRO HASUO, Kyoto University, CRISTIAN BAHRIM, Lamar University — Alignment relaxation of atoms induced by collisions offers accurate information regarding the anisotropic atom-atom potentials and has many applications in atomic and plasma physics. Here we report the energy-averaged cross sections for destruction of alignment $\sigma^{(2)}$ and the rate coefficients for disalignment K_{DA} of Ne^{*}(2p⁵ 3p; 2p_i [J=1]) atoms due to He atom collisions using a many-channels close-coupling method based on a modified model potential for the $\text{HeNe}^{*}(2p^{5} 3p)$ system [1]. Comparison with measurements using laser-induced fluorescence spectroscopy (LIFS) [2] and Hanle signals [3] is reported. The LIFS method measures K_{DA} due to intra-multiplet transitions, while the analysis of Hanle signals gives $\sigma^{(2)}$, which incorporates both the intra- and inter-multiplet transitions. Good agreement between theory and experiments was found for the $2p_2$, $2p_5$, and $2p_7$ states at 77 K < T < 350 K when a static polarizability for each Ne^{*}(2p_i) state is added to the long-range potentials of the $\text{HeNe}^*(2p^5 3p)$ system given in Ref.[4]. [1] Bahrim C and Khadilkar V 2008 J. Phys. B 41 035203 [2] Seo M, Shimamura T, Furatani T, Hasuo M, Bahrim C and Fujimoto T 2003 J. Phys. B 36 1885 [3] Carrington C G and Corney A 1971 J. Phys. B 4 869 [4] Bahrim C, Kucal H and Masnou-Seeuws F 1997 Phys. Rev. A 56 1305

¹(presently at UT Dallas)

Cristian Bahrim Department of Chemistry and Physics, Lamar University

Date submitted: 17 Jun 2008

Electronic form version 1.4