Study of a microwave micro-plasma reactor at atmospheric pressure J. GREGÓRIO, LPGP UPS Orsay / IPFN IST Lisboa, P. LEPRINCE, O. LEROY, LPGP UPS Orsay, L.L. ALVES, IPFN IST Lisboa, C. BOISSE-LAPORTE, LPGP UPS Orsay — In this paper we study a 2.45 GHz microwave micro-plasma source, working in air and in argon at atmospheric pressure. The discharge is sustained within a slit (50 µm -200 µm wide and 6mm width), delimited by two metallic blades placed at the end of a microstrip line [1]. The reactor has two impedance matching units that allow tuning the resonance frequency and the quality factor of the circuit. Optical emission spectroscopy diagnostics allow to deduce the plasma rotational temperature (T_{rot}). In air discharges, the N$_2$ transition C$^3\Pi_u$-B$^3\Pi_u$ yielded T_{rot} between 900 and 1400 K, for 30-45 W input powers and 50-100 µm slits. In argon discharges, the OH transition A$^2\Sigma^+$-X$^2\Pi$ was used, and T_{rot} was found between 500 and 600K, for 8-15W input powers and 50-150 µm slits. For these discharges, the argon electron excitation temperature was found between 0.3 and 0.6 eV. Measurements of the H$_β$ Stark broadening suggest an electron density of the order of 1014 cm$^{-3}$.

Jose Gregório
LPGP UPS Orsay FRANCE / IPFN IST Lisboa PORTUGAL

Date submitted: 12 Jun 2008 Electronic form version 1.4