Abstract Submitted for the GEC08 Meeting of The American Physical Society

A reverse-blocking effect of antiparallel magnetic fields on electron transport in gas HIROTAKE SUGAWARA, Hokkaido University — In order to analyze fundamental features of electron conduction in a magnetically neutral loop discharge (NLD) plasma, electron transport in CF_4 at 0.67 Pa along a magnetically neutral channel (NC) between gradient antiparallel B fields were simulated by a Monte Carlo method. The **B** field was set as $(B_x, B_y, B_z) = (0, 0, Bx)$ (B = const > 0) to let the y-z plane be the NC as a simplified model of the electron path in the NLD plasma, and the **E** field was applied as $(E_x, E_y, E_z) = (0, E, 0)$ (E = const). Two modes of electron transport were observed. When E < 0, the electrons drifted in the -E direction. They were confined near the NC and their spatial distribution f(x) was a Gaussian with a standard deviation $\sigma_x \propto \hat{B}^{-1/2}$. The values of the mean electron energy $\bar{\varepsilon}$, the effective ionization frequency $\nu_{\rm i}$, the average velocity $W_{\rm v}$ and the centroid drift velocity $W_{\rm r}$ were close to those in dc E fields without **B** field at the same E/N. The diffusion coefficients D_y and D_z were also close to the longitudinal and transverse diffusion coefficients $D_{\rm L}$ and $D_{\rm T}$ in the dc **E** field, respectively, but $D_x \simeq 0$. In contrast, when E > 0, the electrons were led into the regions of stronger **B** field by the $E \times B$ drift away from the NC and they hardly drifted in the -E direction because of the gyration. The parameters decreased slowly and their equilibrium values were not available in a trace up to 7.3 μ s, but only D_x had its equilibrium value E/B.

> Hirotake Sugawara Hokkaido University

Date submitted: 13 Jun 2008

Electronic form version 1.4