Abstract Submitted for the GEC08 Meeting of The American Physical Society

Electron attachment to SF_6 at high temperatures¹ T.M. MILLER, J.F. FRIEDMAN, A.A. VIGGIANO, Air Force Research Laboratory, J. TROE, Universität Göttingen — We have recently reported flowing-afterglow Langmuir-probe experiments on electron attachment to SF_6 , thermal electron detachment from SF_6^- , and the pressure dependence of the processes involved, in the temperature range 300-670 K, including theoretical analysis of the possible outcomes of the electron- SF_6 interaction, with modeling of the data. One significant result of that work was the finding that the electron affinity of SF_6 is $1.20 \pm 0.05 \text{ eV}$.² We have now extended the temperature range up to 1300 K. The electron attachment rate constant at 700 K is $1.7 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$ (yielding SF_5^- and SF_6^- product), and the thermal detachment rate constant for SF_6^- is 580 s^{-1} . F⁻ becomes a major ion product at 1000 K and above. We suspect that in this temperature range the SF_6 molecules are decomposing, because the SF_5^- ion product disappears above 1100 K, and only the F⁻ ion product remains. Further work must be carried out to determine the origin of the F⁻, whether from decomposition or a surface-ionization effect.

¹Supported by AFOSR.

²A. A. Viggiano et al., J. Chem. Phys. 127, 244303, (2007).

T.M. Miller Air Force Research Laboratory

Date submitted: 16 Jun 2008

Electronic form version 1.4