Abstract Submitted for the GEC08 Meeting of The American Physical Society

GEC Student Award for Excellence Finalist: Fluorescence Polarization of H₂, D₂, and N₂ Molecules Excited by Polarized Electron Impact¹ J.W. MASEBERG, T.J. GAY, University of Nebraska — We report relative Stokes parameters for both molecular and dissociated atomic transitions in H₂, D₂, and N₂ excited by spin-polarized electrons. In the case of molecular transitions, we find that values of the normalized circular polarization fraction, P_3/P_e , for light emitted in the direction of electron spin polarization are non-zero for H₂ and D₂, but consistent with zero for N₂. Specifically, we have succeeded in rotationally isolating the H₂ $d^3\Pi_u \rightarrow a^3\Sigma_q^+Q(1)$ 601.8 nm transition. It exhibits relatively large nearthreshold values for P_3/P_e ($\sim 17\%$). This is in contrast to the null measurements for the N₂ $C^3\Pi_u \to B^3\Pi_g$ 380.5 nm and N₂⁺ $B^2\Sigma_u^+ \to X^2\Sigma_g^+$ 391.4 nm transitions. For the case of fluorescence from dissociated atomic fragments we observe non-zero circular polarization values for H, D, and N. The near-threshold P_3/P_e values observed for the Balmer-alpha H and D 656.3 nm transitions are nearly equivalent (\sim 8%). For the N(3P)3 $p \rightarrow (^3P)3s$ 824.2 nm transition we find P₃/P_e values of approximately -7%. This surprising negative sign indicates that the atomic fragment is spinning the "wrong way," i.e. in a direction opposite that of the incident electron responsible for the molecular dissociation.

¹Support by NSF Grant PHY-0653379

J.W. Maseberg University of Nebraska

Date submitted: 08 Jul 2008 Electronic form version 1.4