Optical and electrical characteristics of N\textsubscript{2} micro-discharges produced in coplanar surface DBD geometry1 MILAN SIMEK, VACLAV PRUKNER, JIRI SCHMIDT, Institute of Plasma Physics AS CR, v.v.i., DEPARTMENT OF PULSE PLASMA SYSTEMS TEAM — Basic optical and electrical characteristics of nitrogen micro-discharges generated in an AC surface DBD reactor with coplanar electrode arrangement were studied at atmospheric pressure by means of the ICCD microscopy and spectrometry complemented with the multi-channel photon-counting. Temporal evolutions of 2PG (second positive), 2HIR (Hermann infrared), NO-gamma and 2NG (first negative) bands induced by an individual H-shaped micro-discharge generated during positive/negative AC half-cycle were acquired and analyzed. Typical emission waveforms were inspected as function of both frequency and amplitude of the modulated AC driving high-voltage, in the case of a) a single micro-discharge produced during an AC half-cycle and b) multiple, equally spaced micro-discharges produced during an AC half-cycle. Observed waveforms and obtained characteristic time constants will be discussed in the frame of electron impact excitation/ionization, 2(A)+2(A) energy pooling and 2(A)+NO resonant energy transfer processes.

1Work supported by the GA CR (contract no. 202/08/1106).