Abstract Submitted
for the GEC08 Meeting of
The American Physical Society

Comparison Study of Methane Conversion in Low Temperature DC Plasma Reactor with Catalytic High Temperature Fixed Bed Reactor

HAMID REZA BOZORGZADEH, NASER SEYED-MATIN, Research Institute of Petroleum Industry (R.I.P.I.), Iran, AMIN AZIZNIA, MORTEZA BAGHALHA, Department of Chemical Engineering, Sharif University of Technology, Iran — This work reports the results of oxidative coupling of methane in the presence of a Na$_2$WO$_4$/Mn/SiO$_2$ catalyst within the temperature range of 1023–1123 K and a low temperature, atmospheric co-axial cylinder DC corona discharge reactor. Catalytic high temperature reactions were conducted in a quartz tube reactor with Na$_2$WO$_4$/Mn/SiO$_2$ catalyst. A methane/oxygen feed ratio of 4:1 with argon as a diluent gas with total flow of 100, 130, 170 & 200 ml/min has been studied in this investigation for both methods. The plasma reactor was a 15 cm stainless steel co-axial cylinder which cylinder is grounded. Acetylene and hydrogen were the major products of co-axial cylinder DC corona reactor. In the catalytic reactor, ethylene has the highest selectivity and no trace of acetylene was found. The comparison between two methods is also discussed.

1This work is supported by National Iranian Oil Company (N.I.O.C.).