Abstract Submitted for the GEC08 Meeting of The American Physical Society

Hydrogen Sulfide Decomposition in Pulsed Corona Discharge Reactors S. JOHN, G.B. ZHAO, J.J. ZHANG, J.C. HAMANN, S.S. MUKNA-HALLIPATNA, S. LEGOWSKI, J.F. ACKERMAN, M.D. ARGYLE, University of Wyoming — Hydrogen sulfide (H₂S) decomposition was carried out in each of four balance gases (Ar, He, N₂ and H₂) in a wire-in-tube pulsed corona discharge reactor. H₂S conversion rates and H₂S decomposition energy efficiencies depend on the balance gas and H₂S concentrations. H₂S conversion in monatomic balance gases, like Ar and He, is more efficient than in diatomic balance gases like N₂ and H₂. Low pulse forming capacitance, low charge voltage, and high pulse frequency operation produces the highest energy efficiency for H₂S conversion at constant power. H₂S conversion is more efficient in Ar-N₂ gas mixture than in Ar or N₂. These results can be explained by corona discharge observations, the electron attachment reactions of H₂S and the proposed reaction mechanism of H₂S dissociation. The results reveal the potential for energy efficient H₂S decomposition in pulsed corona discharge reactors.

Abstract APS

Date submitted: 07 Oct 2008

Electronic form version 1.4