Hydrogen Sulfide Decomposition in Pulsed Corona Discharge Reactors

S. JOHN, G.B. ZHAO, J.J. ZHANG, J.C. HAMANN, S.S. Muknahallipatna, S. LEGOWSKI, J.F. ACKERMAN, M.D. ARGYLE, University of Wyoming — Hydrogen sulfide (H$_2$S) decomposition was carried out in each of four balance gases (Ar, He, N$_2$ and H$_2$) in a wire-in-tube pulsed corona discharge reactor. H$_2$S conversion rates and H$_2$S decomposition energy efficiencies depend on the balance gas and H$_2$S concentrations. H$_2$S conversion in monatomic balance gases, like Ar and He, is more efficient than in diatomic balance gases like N$_2$ and H$_2$. Low pulse forming capacitance, low charge voltage, and high pulse frequency operation produces the highest energy efficiency for H$_2$S conversion at constant power. H$_2$S conversion is more efficient in Ar-N$_2$ gas mixture than in Ar or N$_2$. These results can be explained by corona discharge observations, the electron attachment reactions of H$_2$S and the proposed reaction mechanism of H$_2$S dissociation. The results reveal the potential for energy efficient H$_2$S decomposition in pulsed corona discharge reactors.