Sputter processes in capacitively coupled multi frequency discharges

STEFAN BIENHOLZ, EGMONT SEMMLER, PETER AWAKOWICZ, AEPT, INSTITUTE FOR PLASMA TECHNOLOGY TEAM — In material processing applications capacitively coupled plasmas have been of great importance over several years. For plasma deposition processes single frequency capacitively coupled discharges only play a minor role due to rather low deposition rates. In contrast a higher electron density, hence a higher ion flux can be achieved in magnetron coaters, which accordingly leads to significantly higher deposition rates. However, disadvantages such as limited target exploitation or restricted usage of non-conductive or magnetic targets are still present. In this contribution we propose a multi frequency driven capacitive discharge to combine the major advantages of both processes with respect to large scale applications. Whereas high electron densities and therefore a high ion flux can be achieved by using very high frequencies (VHF = 60-90 MHz), an additional lower frequency (HF = 1-14 MHz) gives a certain control over the ion bombarding energy. However complex frequency coupling limits the separated tunability.

Stefan Bienholz
AEPT

Date submitted: 10 Jun 2009