Abstract Submitted for the GEC09 Meeting of The American Physical Society

Line intensities in nitrogen low-pressure microwave discharges L.L. ALVES, V. GUERRA, IPFN/IST, Lisbon, Portugal, C. LOPEZ, J. COTRINO, ICMSE/CSIC, Sevilla, Spain — This paper analyzes the intensity of radiative transitions in nitrogen low-pressure (0.3-0.5 Torr) microwave (2.45GHz) discharges, using both optical emission spectroscopy (OES) measurements and a 0D non-equilibrium kinetic model. The latter solves the homogeneous and stationary electron Boltzmann equation, coupled to the rate balance equations for the $N_2(X, v=1-45)$ vibrationally excited states, the N₂(A³ Σ_u^+ , B³ Π_g , C³ Π_u , a¹ Σ_u , a¹ Π_g , w¹ Δ_u , a¹ Σ_g^+) electronic states, the N(⁴S, ²D, ²P) atomic states, and the $N_2^+(X,B)$ and N_4^+ molecular ions. The plasma is produced by a surface-wave discharge, within an 8mm diameter quartz tube, at ~ 55 W power and ~ 100 mm axial length. The rotational (gas) temperature of the nitrogen plasma (\sim 300-600 K) is experimentally determined from measurements of the band transition with the first positive system [FPS, $N_2(B)-N_2(A)$]. Comparison between simulations and measurements for the line intensity ratio Rof the first negative system [FNS-00, $N_2^+(B,v=0)-N_2^+(X,v=0)$ at 391.4 nm] to the second positive system [SPS-25,N2(C,v=2)-N2(B,v=5) at 394.3 nm] are used to estimated the electron density (~ 10^{11} cm⁻³) and temperature (~ 3eV). We discuss the calculation of R using different model approximations, analyzing its evolution with variations in the working parameters: electron density, gas pressure, and gas temperature.

> L.L. Alves IPFN/IST, Lisboa

Date submitted: 11 Jun 2009

Electronic form version 1.4