Abstract Submitted for the GEC09 Meeting of The American Physical Society

Spectroscopic characterization and modeling of Ar/Cl₂ microwave glow discharge¹ J. UPADHYAY, M. RASKOVIC, S. POPOVIC, L. VUSKOVIC, Physics Department, Old Dominion University — Ar/Cl₂ microwave glow discharge was applied for plasma etching of niobium, metal of choice for superconducting radiofrequency accelerator technology. Etching rates were determined for different discharge parameters and results of these experiments are published elsewhere [1]. Simultaneously, plasma emission actinometry was used to estimate the absolute densities of Cl, Cl⁺ and Cl₂ in the variable plasma conditions. These results, combined with results of discharge diagnostics, were compared with results obtained trough the modeling of Ar/Cl₂ discharge. We have calculated the electron-impact ionization rates of Cl₂ and its fragments for electron energy distribution present in bulk plasma. These ionization rates will be used for modeling of plasma etching process and comparing with experimentally determined etching rates.

[1]. M. Raškovic, et al., J. Vac. Sci. Technol. A 27 (2), 301 (2009).

¹Supported by DOE

Marija Raskovic Physics Department, Old Dominion University

Date submitted: 12 Jun 2009 Electronic form version 1.4