X-Ray Induced Breakdown in Air with High Reduced Electric Field

ROBERT VIDMAR, ANUSHA UPPALURI, University of Nevada, Reno — An X-ray pulse was used to initiate breakdown of laboratory air at a high reduced electric field in a parallel plate geometry. The X-ray pulse is from 100 ns to several ms in duration and originates from a 100 keV electron beam operating at a few mA. The X-ray pulse is shown to represent a volumetric ionization rate in air and the count rate from an X-ray detector is related to the volumetric ionization rate. An air-chemistry code is used to model the temporal change in electron density as a function of volumetric ionization rate and reduced electric field. Measurements of X-ray induced breakdown demonstrate the sensitivity of systems that operate with high reduced electric field to pulsed ionizing radiation.

1This material is based on research sponsored by the Air Force Research Laboratory, under agreement numbers FA9550-05-1-0087 and FA9550-07-1-0021.

Robert Vidmar
University of Nevada, Reno