Abstract Submitted for the GEC09 Meeting of The American Physical Society

Parabolic Cross-Sectional Al_2O_3 Microcavity Devices: Volume Dependent Plasma Characteristics Optimization JE KWON YOON¹, BRIAN P. CHUNG², YEON JOON MOON³, SUNG-JIN PARK⁴, J. GARY EDEN⁵, University of Illinois at Urbana-Champaign — Parabolic cross-sectional microcavity arrays having as small as 80 μ m apertures have been reported [1]. As an electrode, ~100 μ m thick aluminum foil is used and wet chemical processes can reduce the thickness of the electrode as thin as 20μ m, varying the volume of the plasma. Due to the controllable electrode height and the electrochemical method introduced previously, dynamic range of aspect ratio from 0.2 to 2.2 can be provided. Plasma volumes from 1.3 to 6.9 pm³ are evaluated while the diameters of apertures are kept constant. Plasma characteristics such as Paschen's curve and emission spectrums in Ne and Ne/Xe are investigated below 700 torr. This study can be applied to devices for display.

[1] K. S. Kim, T. L. Kim, J. K. Yoon, S.-J. Park, and J. G. Eden, Appl. Phys. Lett., 94, 011503, 2009.

¹Graduate Student ²Undergraduate Student ³Undergraduate Student ⁴Adjunct Associate Professor ⁵Lab Director and Professor

> Je Kwon Yoon University of Illinois at Urbana-Champaign

Date submitted: 15 Jun 2009

Electronic form version 1.4