Abstract Submitted
for the GEC10 Meeting of
The American Physical Society

Kinetic of propane in homogeneous high pressure low temperature plasmas of atmospheric gases S. PASQUIERS, N. MOREAU, N. BLINSIMIAND, L. MAGNE, P. JEANNEY, F. JORAND, LPGP-CNRS-UPS, Orsay, France, DIREBIO TEAM — The kinetic of propane in non-thermal plasmas of N\textsubscript{2}/O\textsubscript{2} mixtures is currently under study owing to applications such as cleaning of polluted air streams or plasma assisted ignition and combustion. We have recently suggested that, for C\textsubscript{3}H\textsubscript{8} diluted in N\textsubscript{2}, quenching collisions of the nitrogen metastable states on the hydrocarbon leads to produce H\textsubscript{2} and propene (N. Moreau et al., to appear in J. Phys. D : Appl. Phys.). The present work deals with the effect of oxygen addition on propane consumption in a photo-triggered discharge (homogeneous plasma) working at 460 mbars. By-products are identified and their concentrations are quantified (chromatography) as functions of the O\textsubscript{2} concentration (up to 20%), at 0.5% propane concentration. H\textsubscript{2} concentration decreases when the oxygen concentration increases, but do not drop to zero in the air-like mixture. This effect is explained using a self-consistent 0D discharge and kinetic model. The removal of C\textsubscript{3}H\textsubscript{8} and the production of H\textsubscript{2} follow from a balance between quenching processes and oxidation kinetic of the hydrocarbon. The model predictions are also compared to the measure of the absolute OH-radical density as function of time in the discharge afterglow (UV-absorption).

Date submitted: 28 May 2010
Electronic form version 1.4