Abstract Submitted for the GEC10 Meeting of The American Physical Society

Nitrous oxide production-loss balance in non-thermal high pressure N_2/O_2 plasmas and correlation with acetaldehyde removal W. FAIDER, S. PASQUIERS, P. JEANNEY, L. MAGNE, N. BLIN-SIMIAND, F. JO-RAND, LPGP-CNRS-UPS, DIREBIO TEAM — Various nitrogen oxides and ozone molecules are produced in high pressure non-equilibrium plasmas in N_2/O_2 mixtures. Amongst these compounds, the production-loss balance of N_2O involves excited states of atomic and molecular oxygen and nitrogen, in particular metastables which play important role in the conversion of hydrocarbons and VOCs. The measure of the N_2O density should help in the understanding of the excited states kinetics if measurements can be compared to predictions of a self-consistent modelling of the discharge and plasma reactivity. This is the case for the photo-triggered discharge which allows to create a transient homogeneous plasma. The present work deals with the N2O kinetic processes studied with the help of model predictions compared to the measure of the molecule density by laser absorption spectroscopy in the infrared (QCL). Main parameters are the O_2 percentage in the mixture (at 460 mbars) and the specific deposited energy. Results are discussed with respect to the existing literature on the N_2O kinetic. The effect of addition of a small amount of acetaldehyde (less than 0.5 %) to the N_2/O_2 mixture is examined in order to get information about the role of N_2 and O metastable states in the removal of the pollutant molecule.

> W. Faider LPGP-CNRS-UPS

Date submitted: 28 May 2010

Electronic form version 1.4