Improvement of the fluid electron description in a hybrid model of a Hall effect thruster by means of the ion velocity profile measurements

LAURENT GARRIGUES, LAPLACE (Laboratoire, PLAsma et Conversion d’Energie), CNRS and Université de Toulouse, STÉPHANE MAZOUFFRE, GUILLAUME BOURGEOIS, ICARE (Institut de Combustion Aérothermique Réactivité et Environnement), CNRS — Hall effect thrusters are now used on board geostationary satellites. A xenon flow is released at the inlet of a cylindrical channel through the anode plane. A radial magnetic field is generated at the end of the channel to impede the axial electron current arising from an external cathode. A discharge voltage is applied between the electrodes. Such a ExB configuration leads to a high ionization of the neutral propellant flow and a the classical theory to describe the electron transport across the magnetic field barrier falls down. A two-dimensional model of the thruster has been developed, where a kinetic description is used for the ions and the electrons are treated as a fluid. The goal of this work is to show that measurements of the axial ion velocity profile leads to a better description of the electron transport diffusion coefficient used in the fluid approach.

1This work is supported by the GDR “Propulsion par Plasma dans l’Espace.”