Scaling microplasma arrays for material processing \textsuperscript{1} CHEN WU, Tufts University, NAOTO MIURA, JUN XUE, MICHAEL GRUNDE, KEVIN MORRISSEY, JEFFREY HOPWOOD — Microwave-generated microplasma produces a dense, continuous discharge because the period of the electric field is shorter than the electron confinement time. The electrons are trapped in the plasma between two resonating microelectrodes driven at $\sim 1$ GHz. Stark broadening of the atomic hydrogen emission shows the time-average electron density is $\sim 10^{14}$ cm$^{-3}$ at atmospheric pressure in argon at 1 watt of absorbed power. Gas temperature remains less than 900 K according to laser diode absorption profiles of the Ar metastable states. These conditions suggest that microplasmas can provide a high ion flux to a surface while maintaining low surface temperatures. In an effort to scale the microplasma to lengths that are compatible with roll coating, we present coupled arrays of resonator-driven microplasma. Hundreds of microplasmas can be sustained in parallel using a single microwave power source. Coupled mode theory provides the physical description of these line-shaped cold atmospheric plasmas. Stability of the microplasma is due to detuning of each resonator by the plasma sheath capacitance and plasma resistance. Examples of hydrocarbon deposition will be discussed.

\textsuperscript{1}Supported by the US Department of Energy under grant DE-SC0001923.