Abstract Submitted for the GEC10 Meeting of The American Physical Society

Decomposition of *m*-xylene by $N_2(A^3\Sigma_u^+)$ and thin film deposition SUSUMU SUZUKI, Chiba Institute of Technology, MITSUO SHIMOZUMA, Hokkaido Institute of Technology, HARUO ITOH, Chiba Institute of Technology — The study has carried out on the determination of the collisional quenching rate coefficient of $N_2(A^3\Sigma_u^+)$ by *m*-xylene (C₈H₁₀), which has the weakest bonding strength among the three isomers of xylene. In our first attempt, the collisional quenching rate coefficients of $N_2(A^3\Sigma_u^+)$ by xylene (o-xylene, m-xylene, and p-xylene) have not yet been reported to the best of the authors' knowledge. The diffusion coefficient D_{m1} of $N_2(A^3\Sigma_u^+)$ in $N_2/(1ppm)$ m-C₈H₁₀ mixtures and the collisional quenching rate coefficient \vec{k} of $N_2(A^3\Sigma_u^+)$ by *m*- xylene is determined as 151.5 ± 0.7 cm²/s and $(4.4\pm0.6)\times10^{-9}$ cm³/s, respectively. Surprisingly, it is found that any by-product of xylene is deposited on the cathode, through repeated experiments, and then the current-voltage curves consistently shift to the higher- E/p_0 region. For the purpose of clarifying the reason behind this behavior, we have confirmed that these changes in the current-voltage curves are caused by the thin-film deposition of a by-product of decomposed xylene on the cathode surface by Auger electron spectroscopy.

> Susumu Suzuki Chiba Institute of Technology

Date submitted: 14 Jun 2010

Electronic form version 1.4