Diagnostics of Pulsed Powered Microplasma Discharge in N\textsubscript{2} by Emission Spectroscopy

MARIUS BLAJAN, KAZUO SHIMIZU, Shizuoka University, Innovation and Joint Research Center — The aim of this paper is to analyze the emission spectrum of the microplasma, which is atmospheric pressure nonthermal plasma, generated by a pulse power supply in nitrogen gas. Microplasma discharge in N\textsubscript{2}, generated at relatively low discharge voltages around 1 kV, was investigated with an ICCD camera, a spectrometer and a photomultiplier tube. A Marx Generator with MOSFET switches was developed and used as a pulse power supply. It has a negative output up to –2 kV, rise time 100 ns, pulse width 1 us. Discharge current was confirmed at rising point of discharge voltage. About -2.5 A was obtained at -1.5 kV for negative pulse. Emission spectrum showed N\textsubscript{2} Second Positive System band (N\textsubscript{2} SPS), N\textsubscript{2}+ First Negative System Band (N\textsubscript{2}+ FNS) and N\textsubscript{2} First Positive System band (N\textsubscript{2} FPS). Lifetime emission signal of N\textsubscript{2} SPS peak of 337.1 was about 60 ns. Temperature calculation showed that microplasma is non equilibrium plasma due to the inequality $T_e > T_{vib} > T_{rot}$.

Marius Blajan
Shizuoka University, Innovation and Joint Research Center

Date submitted: 11 Jun 2010 Electronic form version 1.4