Abstract Submitted for the GEC10 Meeting of The American Physical Society

Microplasma Generation of Reactive Oxygen Species for DNA Oxidation J.S. SOUSA, LPGP, CNRS-UPS, Orsay, France and IPFN-LA, IST, Lisboa, Portugal, G. BAUVILLE, B. LACOUR, V. PUECH, LPGP, CNRS-UPS, Orsay, France, M. TOUZEAU, LTM, CNRS-UJF-INPG, Grenoble, France, J.L. RAVANAT, CEA, Inac, SCIB/LAN, CEA-UJF, Grenoble, France — We have developed arrays of microcathode sustained discharges (MCSD) for the generation of singlet delta oxygen (SDO) at atmospheric pressure. In He/O₂/NO mixtures, SDO densities higher than 1.0 10¹⁷cm⁻³ have been efficiently produced and transported over distances longer than 50cm, providing SDO fluxes greater than 100mmol/h. Additionally, ozone (O_3) densities up to 10^{16}cm^{-3} have also been obtained. As the ratio between SDO and O_3 can be easily and finely tuned in the range 10^{-3} - 10^{+3} , these arrays of MCSD are very useful tools for examining the reactivity of these reactive oxygen species (ROS) with biological components. Experiments were performed showing that SDO and O_3 are able to oxidize DNA. We observed that O_3 is much more efficient than SDO at degrading DNA. While O₃ oxidizes all DNA nucleobases almost indifferently, SDO reacts mainly with Guanine. We also report that 4-OH-8-oxodGuo is produced by the SDO oxidation of dGuo, and can, thus, be used as a SDO biomarker. A more detailed study on the reactivity of ROS with DNA is currently in progress.

> Joao Santos Sousa LPGP, CNRS-UPS, 91405 Orsay, France and IPFN-LA, IST, 1049-001 Lisboa, Portugal

Date submitted: 12 Jun 2010 Electronic form version 1.4