Abstract Submitted
for the GEC10 Meeting of
The American Physical Society

Electrical characterisation of an industrial capacitively coupled plasma processing chamber for actinometry studies in Ar/O\textsubscript{2}/SF\textsubscript{6} gas mixtures with global model comparisons

CHANEL HAYDEN, EVGUENI GUDIMENKO, STEPHEN DANIELS, NCPST, DCU, DAVID GAHAN, Impedans Ltd, WWW.NCPST.IE/PRECISION - PRECISION COLLABORATION — Actinometry is an optical emission technique for estimating concentrations of radical particle densities in plasmas. This technique is based on normalised emission intensity of a radical to that of an inert gas giving a ratio of concentrations. To determine radical concentrations, electrical characteristics such as electron density, n_e, electron temperature, T_e, and electron energy distribution function (EEDF) must be known. A number of electrical diagnostics are used to measure these parameters which are subsequently used in calculation of radical particle densities of a given reactive gas. An investigation of the pressure and power effect on the electron and ion energy distribution functions (IEDF) was carried out for a number of discharge gases including Ar, O\textsubscript{2} and SF\textsubscript{6} in a capacitively coupled plasma reactor. A hairpin probe is used to measure the electron density in the centre of the discharge and a Langmuir probe determines the EEDF. In addition, the EEDF and IEDF at the surface of the electrode are investigated using a retarding field energy analyser (RFEA) for comparison. The data is compared with a global model of the discharge and the results presented.

Chanel Hayden
NCPST, DCU

Date submitted: 13 Jun 2010
Electronic form version 1.4