Abstract Submitted for the GEC10 Meeting of The American Physical Society

Kinetics of pulsed DC discharge in $N_2/O_2/N_xO_y$ mixtures studied by quantum cascade laser absorption spectroscopy DANIIL MARI-NOV, OLIVIER GUAITELLA, ANTOINE ROUSSEAU, LPP, Ecole Polytechnique, UPMC, Université Paris Sud-11, CNRS, Palaiseau, France, MARKO HUEBNER, JURGEN ROEPCKE, INP- Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany — In this work we study the kinetics of NO, NO₂ and N₂O in a pulsed low pressure (~ 1.3 mbar) DC discharge in N₂ and N₂/O₂ using in-situ QCLAS absorption. Gas mixture of 1% NO, NO₂ or N₂O in pure N₂ or air is exposed to a single plasma pulse (1-10ms, 25-150 mA). In pure N₂ plasma, NO and NO₂ are destroyed completely within few ms after the beginning of the pulse. In air plasma NO₂ is transformed into NO while NO concentration reaches a steady state. N_2O destruction in both cases is 10 times slower while N_2O in the discharge undergoes strong vibrational excitation. Vibrational relaxation of N₂O in the post-discharge occurs within several 10s of ms, indicating the presence V-V' transfer from $N_2(v)$. In this way one can use N2O as an indicator of the excitation of IR inactive N2 and follow the relaxation of vibrational temperature of N₂. Laser absorption measurements are strongly influenced by the effect of gas heating, so measurements of T_g using N_2 (2^+) emission are underway.

> Daniil Marinov LPP, Ecole Polytechnique, UPMC, Université Paris Sud-11, CNRS, Palaiseau, France

Date submitted: 14 Jun 2010 Electronic form version 1.4