GEC11-2011-000007

Abstract for an Invited Paper for the GEC11 Meeting of the American Physical Society

For the past 30 years, plasma process technology has led in the efforts to shrink the pattern size of ultralarge-scale integrated (ULSI) devices. However, inherent problems in the plasma processes, such as charge build-up and UV photon radiation, limit the process performance for nanoscale devices. To overcome these problems and fabricate nanoscale devices in practice, we have proposed damage-free neutral-beam process. In this presentation, I describe the issues of plasma processes and the demanded atomic layer process for future nanoscale devices. I also introduce our developed damage-free etching, structure-designable deposition of super low-kSiOC film and low-temperature oxidation (thin SiO₂, GeO₂) processes using neutral beams and discuss the actual applications of neutral beam processing for future nanoscale devices (such as, Fin-MOSFET, and Quantum Dot Solar Cell). Neutral beams can perform atomically damage-free etching, deposition and surface modification. Then, the neutral beam process can precisely control the atomic layer chemical reaction and defect generation. This technique is a promising candidate for the nano-fabrication technology in future nanoscale devices.