Abstract Submitted for the GEC11 Meeting of The American Physical Society

Pore Sealing vs. Surface Densification in Inhibition of O_2 Plasma Damage in Organosilicates¹ JEFFRY KELBER, SWAYAMBHU BEHERA, Dept. of Chemistry, University of North Texas, Denton, TX 76203 — XPS and FTIR were used to determine effects of surface densification vs. pore sealing on O_2 plasma-induced carbon loss from organosilicate glass (OSG). O_2 plasma exposure during photoresist removal induces carbon loss and increased dielectric constant in OSG. He plasma-induced SiO_2 formation (surface densification) is considered the chief damage inhibition mechanism. However, comparison of OSG pretreatments involving (a) direct He plasma, or (b) He plasma exposure in the presence of a MgF_2 window (He/MgF₂), indicates that UV-induced pore sealing in the OSG interior plays a dominant role in inhibition of carbon loss. He plasma pretreatment results in the formation of a ~ 50 angstrom thick SiO₂ surface layer, whereas He/MgF₂ pretreatment-which transmits only UV results in < 3 angstroms SiO₂ formation; yet both He plasma and He/MgF_2 pretreatments inhibit carbon loss at longer O_2 plasma exposure times. Results are consistent with findings concerning the role of O radical diffusion down nanopores in the carbon loss process, and O radical diffusion through SiO₂. UV radiation blocks interconnections between pores in OSG, inhibiting carbon loss.

¹Support under SRC Task ID 2071.002 is gratefully acknowledged

Jeffry Kelber Dept. of Chemistry, University of North Texas, Denton, TX 76203

Date submitted: 25 Jun 2011

Electronic form version 1.4