Plasma-Surface Interactions and Impact on Electron Energy Distribution Function

N.A. FOX-LYON, G.S. OEHRLLEIN, University of Maryland, College Park, N. NING, D.B. GRAVES, University of California, Berkeley, V. GODYAK, RF Plasma Consulting — The goal of this work is to explore the role of surface processes in influencing characteristic electron energy distribution functions (EEDF). As a model system, we use a well characterized, inductively coupled plasma system to examine Ar/H$_2$ (or D$_2$) discharges interacting with a-C:H films. The modification/erosion of a-C:H surfaces is monitored in real time by ellipsometry and the effects of gas mixtures and surface generated carbon on plasma parameters (T_e, plasma density, EEDF) are probed with Langmuir probe measurements. We find that plasma density decreased greatly (from 10^{11} to 10^9 per cm3) with small H$_2$ additions to Ar plasma (conditions: 10-30 mTorr, 300-600 W source power). The electron temperature was shown to increase with H$_2$ flow. At high H$_2$ flows, the electron energy distribution transitions from Maxwellian distribution to a two-temperature distribution. The addition of 1-20 % CH$_4$ into H$_2$ plasma shows an increase in plasma density and a change in the electron temperature. The hydrocarbon erosion products of a-C:H films in H$_2$ plasma are found to cause a similar effect on plasma properties as CH$_4$ addition. These observations indicate that prediction/control of EEDF for plasmas interacting with reactive bounding surfaces requires an understanding of the consequences of the plasma-surface interactions.